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The problem of the necessary conditions for the stability of steady motions for systems with constraints produced by large potential 
forces is investigated. An augmented matrix, similar to that arising under conditions when the restriction of quadratic forms to 
a linear manifold is sign-definite, is introduced to investigate the eigenvalues of the linearized system. The question of the 
correctness of the realization of unilateral constraints in special cases of zero reaction is discussed using an example. © 2004 
Elsevier Ltd. All rights reserved. 

As is well known, Routh's method [1, 2] and its modifications (see, for example, [3-5]) enable one not 
only to solve effectively the problem of the existence of steady motions of mechanical systems, subject 
to constraints or possessing first integrals, but also to investigate the sufficient conditions for their stability 
or instability. At the same time, for systems subject to unilateral constraints, investigations of the 
necessary conditions for stability are made difficult by certain complexities related to the construction 
of the equations of perturbed motion. Below we discuss one of the possible ways of overcoming these 
difficulties in the case when the mechanical nature of the constraint is known. 

1. T H E  E Q U A T I O N S  O F  M O T I O N  O F  A M E C H A N I C A L  S Y S T E M  
C O N S T R A I N E D  BY A L A R G E  P O T E N T I A L  F O R C E  

Consider the motion of a mechanical system, for which the expressions for the kinetic and potential 
energy have the form 

T = T ( x , x ) ,  U = U ( x ) ,  x ~ R n (1.1) 

We will a s s u m e  tha t  an  a d d i t i o n a l  force  wi th  a p o t e n t i a l  ( c o m p a r e d  wi th  [6, 5]) 

U N = ~Ncp(x) (1.2) 

which depends on the positive parameter N, also acts on the system, where 

(p(x) = f Z ( x )  (1.3) 

o r  

= If2(x),  X e ~g+ U ~ (1.4) 
q~(x) L0, x~%_ 
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The regions %± and the surface % are defined by the relations 

~ = {x: f ( x ) < 0 } ,  ~+ = {x: f ( x ) > 0 } ,  ~ = {x: f ( x ) = 0 }  (1.5) 

respectively. We will assume thatf(x) is a continuous function in R n, and the smooth surface % can be 
split into n-dimensional regions %_ and % +. 

We will assume that, for sufficiently large values of the parameter N, a force with the potential (1.2), 
(1.3) produces the bilateral constraint 

f(x) = 0, x~R n (1.6) 

while a force with potential (1.2), (1.4) produces the unilateral constraint 

f ( x ) < 0 ,  x ~ R  n (1.7) 

Since all the functions introduced above are continuous, the equations of motion can be represented 
in the form 

d o3L o3L ¢gU,v 
L = T -  U (1.8) 

d ' 7 ~  = ~x ;gx ' 

2. STEADY MOTIONS 

According to Routh's theory [1-5], the steady motion of the system considered can be obtained as critical 
points of the potential 

W(x; N) = U(x) + UN(X) (2.1) 

They are defined by the relations 

Wx(x; N) = Ux(x) + Nf(x)fg(x) = 0 (2.2) 

which hold both for the potential (1.2), (1.3), and for the potential (1.2), (1.4) in the region ~g t0 %+. 
For potential (1.2), (1.4) in the region %_, the equations of steady motion have the form 

W~(x; N)  = Ux(X) = o 

We will introduce the variable 

~. = N f ( x )  

as was done previously in [5]. Then, system (2.2), consisting of n equation in n variables, becomes the 
equivalent system 

Ux+~,fx = 0, f (x)  = £2L, £ = N "-t (2.3) 

consisting of n + 1 equations in n + 1 unknowns, As ~ ---> 0 the second equation is converted into 
Eq. (1.5) of the surface %. 

The solution of system (2.3), presented in the form of a formal series in the parameter ~, has the 
form 

X • X 0 "4" EX I + . . . .  ~L = ~0 + ~ 1  + " "  (2.4) 

where the quantities x0 and ~0 satisfy the system 

o o 
Ux+Zofx  = O, : = 0 (2.5) 

fo f(Xo), fo fx(Xo) ' o = = U x = Ux(x o) 
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If the matrix 

A = Uxx(Xo) + ~,ofxx(Xo) (2.6) 

is non-degenerate, the quantities xl and )~1 can be represented in the form 

-1 0 0 - 1  -1 0 -1 0 0 - 1  
xt = ~'o( A fx, fx) A fx, ~'l = -ko( A fx, fx) 

in the case when the constraint is stressed. Since 

f(Xo+EX I+...) = /O+E(fO, xl)+... = e~LO+... 

and ~ > 0 when ~ > 0 the critical point is situated inside the region %+, and the constraint is stressed 
irrespective of whether it is unilateral or bilateral. When ~0 < 0 the critical point, which satisfies relations 
(2.5), is situated inside the region %_, which it cannot be when realizing a unilateral constraint with the 
assumptions made above. Finally, the case ~ = 0 requires the consideration of higher approximations. 

3. T H E  N E C E S S A R Y  C O N D I T I O N S  F O R  S T A B I L I T Y  

The sufficient conditions for stability of the steady motions obtained within the framework of Routh's 
theory as N ~ oo, i.e. as e ~ 0, were established earlier in [5]. We will investigate the necessary conditions 
for stability. First of all, using the notation introduced above, we will represent the equations of motion 
in the form 

d OL ~L . ~  
d ' t ~  = 0"x -~" ' f ( x )  = ke (3,1) 

These equations hold everywhere if the constraint is bilateral, and in the region % tA % + if the constraint 
is unilateral. We will consider the case when any of these conditions is satisfied. Then, the equations 
of motion (3.1), linearized in a small neighbourhood of the steady motion obtained, have the form 

~$ciO.~. i ~ o x j  = ~xiOxj j OXi(TX j • . . 

(3.2) 

~fSxj  = ES~, (3.3) 

All the partial derivatives in Eqs (3.2) and (3.3) are calculated at the critical point (x = xe,/~ = 0, 
~, = ~) .  By substituting expansions (2.4) into Eqs (3.2) and (3.3), in the limit as E ~ 0 we can represent 
these relations in the form 

PS£ + GSx + ASx + FS~, = 0, (F, 8x) = 0 (3.4) 

(compared with [7, Chapter 5, p. 38]). Then, the characteristic equation can be represented in the form 

detJ(g) = 0 ,  J (g )  - F r 0 ' 

The matrix J(0) is identical with the augmented matrix of the second variation of the potential, known 
from [4] for systems subject to a bilateral constraint, and from [5] for systems subject to a unilateral 
constraint. 

In fact, substituting the relations 

8x = e~ttSx0, 8k = e~ttS~,o (3.6) 

into Eq. (3.4), we obtain 

H($t)Sx o + F S ~  o = 0, (F, 8x o) = 0 (3.7) 
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whence the assertion also follows. Moreover, since 

8x o =-H-I(~t)FS~o 

we have from the second relation of (3.7) 

(F ,H-IOt )F)  = 0 (3.8) 

In the simplest situation, when there are only two degrees of freedom, the assertion in [7] on possible 
stabilization of a system when there is a new constraint immediately follows from relation (3.8). 

Remark. Expanding determinant (3.5) with respect to the last column, we obtain a polynomial of degree 
2(n - 1). This indicates that the use of the augmented matrix enables one, in advance, to eliminate the pair of zero 
roots, obtained in the direct calculation of the determinant of the unaugmented matrix. 

4. 

Suppose 

T H E  S T R U C T U R E  OF T H E  C H A R A C T E R I S T I C  P O L Y N O M I A L  OF 
A S Y S T E M  W I T H  T H R E E  D E G R E E S  OF F R E E D O M ,  ON W H I C H  

A S I N G L E  C O N S T R A I N T  IS I M P O S E D  

P = I ,  G =   211 -g3 0 gl ' 

g 2 - g l  0 

A = diag(a 1, a 2, a3), F = col(fl, f2,  f3) 

The characteristic equation is then given the relation 

2 + al g3~ -g2~ f l  

-g3~ 2 + a 2  gl~ f2 

g2~ -gl~ 2 +  a3 f3 

f l  f2 f3 0 

= 0 (4.1) 

The function on the left-hand side of (4.1) is even in ~t. Consequently, assuming v = g2 and changing 
the sign, we obtain 

av2 +bv+c = 0 
2 

a Z f ~ , b  Z f 2 ( a 2 + a 3 ) + [ Z f l g l ] , C  Z 2 = = = f l  a2a3 
(1,2,3) (I,2,3) (1,2,3) -J (i,2,3) 

(4.2) 

Moreover, since the steady motion obtained is assumed to be non-special, we can assume that 

2 2 
a = f~  + f2  + f3  = 1 (4.3) 

The necessary conditions for stability turn out to be satisfied if both roots of Eq. (4.2) are real and 
negative. By virtue of the last assumption, these conditions have the form 

b2-c>O, b>O, c > O  (4.4) 

Remark. Generally speaking, the problem considered looks simpler than the problem of the existence and stability 
of periodic motions of systems subject to unilateral constraints. As regards publications on this optic, going back, 
probably, to [8-11], there are detailed reviews in [12-15]. 



Steady motions of systems with constraints produced by large potential forces 781 

5. THE G E N E R A L I Z E D  T H R E E - B O D Y  P R O B L E M  

In order to illustrate the results obtained, we will consider the plane problem of the motion of two 
tethered massive points, which interact with a third massive point by forces of Newtonian attraction. 
This problem was considered in [15] (see also [16]) on the assumption that the points are connected 
by inextensible weightless rods and form a dumbell; it was shown, in particular, that there are regions 
in parameter space such that, for appropriate values of these parameters, gyroscopic stabilization of 
"triangular" steady motions is possible. 

As an extension of these results, the conditions for the existence and stability of steady motions were 
considered for a broad class of possible interaction potentials between the points forming the dumbell 
[17]. 

In order to apply the results obtained to the problem described above, it is sufficient to investigate 
the sign of the force which produces the corresponding constraint. If r 1 and r2 are the distances from 
the point m0 to the points ml and m 2 forming the dumbell, respectively, and c~ is the angle between 
m0ml and m0m2, the reduced potential has the form [17] 

2 2 1/2 
w = l =  ( r~+ re -2r ,  r2cosoO (5.1) 

where 1-I = -'~no(ml/rl + m2/r2) is the Newtonian potential, E is the interaction potential between the 
points m I and m2, andp is the constant of the cyclic integral. The function 

2 2 
J = [ml(mo+m2)rl+m2(mo+ml)r2-2mlm2rirzCOSO~], m = mo+m l + m  2 

describes the moment of inertia of the whole system about its centre of mass. 
The equations of the critical points of the reduced potential (5.1), i.e. the equations of the steady 

configurations, have the form [17] 

2 mom! 
3_._W = _ p z[ml(m ° + mz)r I _ mlm2r2cosot] + T " " y -  + 
~rl mJ r I 

r I - r2cos~ 
+ E'(l) = 0 (1 ~-~2) 

l 

(5.2) 

3W - - ~ m l m 2  sin~ + 0 = r l r 2  s i n 0 t  = 
~a mJ 

According to Eqs (5.3), there is a class of "triangular motions" such that 

p21 
E'(1) = mjemim2s in~  

(5.3) 

(5.4) 

We will assume that the tensile strength of the tether is given by the potential 

~N(l -/0)2/2, l - l 0 > 0 
E(l) (5.5) / 

[0, 1 -10<0  

where l0 is the length of the tether in the unstretched state. Then, by virtue of expressions (5.4) and 
(5.5) in the class of triangular motions the tether stretches, and the results related to the existence and 
stability of steady motions, obtained previously in [15, 16] for a constraint realized using a rod, remain 
true for a constraint realized using a tether. 

6. THE R E A L I Z A T I O N  OF U N I L A T E R A L  C ONST R AINT S 
IN SPECIAL CASES 

The use of large potential forces to model unilateral constraints in special cases requires certain 
precautions. As an example, we will consider the motion of a heavy bead, freely sliding along a vertical 
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P 

R 

Fig. 1 

collar in the form of a circle of radius R. Suppose 0 is the angle of deflection of the bead from the 
ascending vertical (see the figure), the bead is connected by a massless tether to the point P, situated 
above the vertical diameter of the circle at a distance p = R + 10 from its centre, and 10 is the length of 
the tether in the unstretched state. 

We will obtain the equilibrium positions of the system and investigate their stability in the case when 
the potential of the elastic forces has the form 

0, l<  10 

Ue = Nq~(l), q~(l) = (1-10) 2, 1>10 

where l is the length of the stretched tether. By the cosine theorem 

1 = [p2-2pRcos0  +R2] Irz OllO pRsinOll 

Since the potential energy of a uniform gravitational field is equal to UN = mgRcosO, the equilibria are 
found from the equation 

3UI~O = q~(O)sin0 = 0, U = U#+UE,  ~(0)  = - m g R + N ( l - l o ) p R / l  

The system has four different equilibria. Where 0 = 0 we have the upper equilibrium and when 
0 = n we have the lower equilibrium. There are also two "oblique" symmetrical equilibria, for which 
the length of the tether is given by 

1 = NloPl(N 9 - rag) 

The oblique equilibria approach the upper equilibrium as N ~ oo. They exist when N > N*, where 

N* = mg(R  + p)/(2Rp) 

When N = N* the oblique equilibria coincide with the lower equilibrium, and when N < N* the tether 
is tensionless. 

In order to investigate the stability of the equilibria we will calculate the second derivative of the 
potential. It has the form 

cl2U/~O 2 = q¢(O)sinO + 9(O)cosO 
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At the upper and lower equilibria the first term on the right-hand side vanishes. At the oblique equilibria 
the second term vanishes. Moreover, at the upper equilibrium 

~2U(0) /~02 -- -mgR 

and it is unstable for all values of the constant of elasticity N. At the lower equilibrium 

¢)2U('/I:)/~02 ---- 2(N- N*)R2pI(R + p) 

It is unstable when N > N* and stable when N < N*. An investigation of the intermediate situation 
requires a calculation of higher derivatives. 

Hence, the results obtained are somewhat depressing. In fact, the only kinematically possible position 
of the system with a tensionless tether turns out to be unstable, i.e. it is physically unrealizable for any 
value of the constant of elasticity as large as desired. In this case, the oblique equilibria turn out to be 
stable and physically realizable, but disappear when the constant of elasticity has arbitrarily large values. 

The example considered shows that it makes sense to introduce the idea of the mobility of the system, 
based on an energy criterion. We will take as the basis of this, the idea of regions of possible motion 
(see, for example, [18]). 

Definition. Suppose a mechanical system, performing motion under the action of active forces with 
a potential U(x) and under the action of forces with a potential UN(X), which produce a constraint in 
the limit as N ---) 0% allow of a first integral (the Painlev6-Jacobi energy integral) 

J~ = T(£,x) + U(x)+ UN(X) = h 

where T > 0, and the condition T = 0 implies that the equality x = 0 is satisfied. The region of 
configurational space ~N, h = {X: U + UN <- h} will be called the region of mobility of the system at the 
level h of the Painlev6-Jacobi energy integral. The region of configuration space to which the region 
of mobility approaches as N ~ oo, will be called the limit region of mobility at the level h of the integral 

In the example considered above, for values ofh < mgR the region of mobility turns out to be empty 
for fairly large values of N. For these values of N the motion turns out to be impossible for the values 
of the energy integral indicated. In this case the limit region of mobility also turns out to be empty. 
However, when h >_ mgR the region of mobility is not empty for all values of N, and the motion turns 
out to be possible. In this case the limit region of mobility consists of exactly one point, as was shown 
above. 

It is clear that the structure of the region of the mobility in general depends considerably on the 
structure of the potential of the active forces. 
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